Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.447
Filtrar
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
2.
BMC Cancer ; 24(1): 504, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644473

RESUMO

BACKGROUND: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS: The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION: The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Camundongos Nus , Podofilotoxina , Carcinoma de Pequenas Células do Pulmão , Animais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Camundongos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapêutico , Linhagem Celular Tumoral , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Proteólise/efeitos dos fármacos
3.
Chemistry ; 30(22): e202400019, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323740

RESUMO

The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hidrogênio , Ferro , Podofilotoxina/análogos & derivados , Oxirredução , Ferro/química , Hidroxilação , Hidrogênio/química , Estresse Oxidativo
4.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38393642

RESUMO

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Assuntos
Antineoplásicos , Podofilotoxina , Camundongos , Animais , Humanos , Feminino , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Simulação de Acoplamento Molecular , Camundongos Nus , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química
5.
Iran J Med Sci ; 49(1): 30-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38322161

RESUMO

Background: Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines. Methods: An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey's HSD test. P<0.05 was considered statistically significant. Results: Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion: Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Furanos , Lignanas , Humanos , Feminino , Podofilotoxina/análise , Oxirredutases/genética , Oxirredutases/metabolismo , Células HEK293 , Irã (Geográfico) , Lignanas/análise , Lignanas/metabolismo
6.
Chemistry ; 30(4): e202302595, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37814110

RESUMO

Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.


Assuntos
Lignanas , Podofilotoxina , Relação Estrutura-Atividade , Lignanas/química , Lactonas , Biologia
7.
Plant Cell Physiol ; 64(12): 1436-1448, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37948767

RESUMO

Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.


Assuntos
Apiaceae , Lignanas , Podofilotoxina/química , Filogenia , Lignanas/metabolismo , Apiaceae/química , Apiaceae/metabolismo
8.
J Chromatogr A ; 1711: 464452, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37857153

RESUMO

A novel hydroxylpropyl cellulose (HPC) modified graphene oxide (GO)-based molecularly imprinted polymers (HPC-GO-MIP) have been developed as a solid phase extraction (SPE) material for the selective separation and extraction of podophyllotoxin. In this strategy, the cellulose with rich hydroxyl groups was introduced to form bi-functional monomers with methacrylic acid to provide more recognition sites for the improving of extraction efficiency, then GO was added as a two-dimensional substrate for MIP to improve the material morphology and surface area. The extraction performances of obtained HPC-GO-MIP material were tested, and the results prove its high efficiency and selectivity for podophyllotoxin extraction. The saturated adsorption capacity reached 23.1 µg/mg, and high enrichment efiiciency of 463.8 folds was realized under the premise of ensuring the recovery rate. The selective imprinting factor was much higher than those of kaempferol and quercetin, which were the main compounds in podophyllum fruit. Under the optimized SPE conditions, the HPC-GO-MIP based SPE-HPLC method showed the detection limit of 14.2 ng/mL for podophyllotoxin assay. When applied to podophyllum fruit samples, the material showed excellent ability of selective separation and enrichment of podophyllotoxin, and the relative standard deviations (RSD) of intra and inter batches were less than 8.1 % and 5.7 % in real samples detection. The HPC-GO-MIP SPE method broadened the application for high multiple extraction in trace analyte samples and provided a valuable solution to improve the selective separation and detection.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros/química , Podofilotoxina , Celulose , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Adsorção
9.
Eur J Med Chem ; 260: 115780, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666045

RESUMO

E-selectin, which is highly expressed in vascular endothelial cells near tumor and get involved in the all tumor growth steps: occurrence, proliferation and metastasis, is considered as a promise targeted protein for antitumor drug discovery. Herein, we would like to report the design, preparation and the anticancer evaluation of the peptide-PEG-podophyllotoxin conjugate(PEG-Pep-PODO), in which the short peptide (CIELLQAR) was used as the E-selectin ligand for the targeting purpose and the PEG portion the molecule got the conjugate self-assembled to form a water soluble nanoparticle. In vitro release study showed that the conjugated and entrapped PODO could be released simultaneously in the presence of GSH (highly expressed in tumor environmental conditions) and the GSH would catalyze the break of the disufur bond which linked of the PODO and the peptide-PEG portion of the conjugate. Cell adhesion test of the PEG-Pep-PODO indicated that E-selectin ligand peptide CIELLQAR could get specifically and efficiently binding to the E-selectin expressing human umbilical vein endothelial cells (HUVEC). In vitro cytotoxicity assay further revealed that PEG-Pep-PODO significantly improved the selectivity of PEG-Pep-PODO for killing the tumor cells and normal cells compared with PODO solution formulation. More importantly, the in vivo experiment demonstrated that the conjugate would accumulate of the PODO payload in tumor through targeting endothelial cells in the tumor microenvironment, which resulted in the much improved in vivo inhibition of tumor growth, intratumoral microvessel density, and decreased systemic toxicity of this nanoparticle over the free PODO. Furthermore, this water soluble conjugate greatly improved the pharmacokinetic properties of the mother molecule.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Podofilotoxina/farmacologia , Selectina E , Ligantes , Peptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Polietilenoglicóis , Microambiente Tumoral
10.
Int J Mol Med ; 52(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37711052

RESUMO

Podophyllotoxin (PPT), which is derived from the podophyllum plant, exhibits marked cytotoxic effects against cancer cells; however, the precise molecular mechanism underlying its activity against human oral squamous cell carcinoma (OSCC) has not been elucidated. In the present study, the mechanism by which PPT induced cytotoxicity in two OSCC cell lines, HSC3 and HSC4, was determined. The effects of PPT on cytotoxicity in HSC3 and HSC4 cells were analyzed using Annexin V/PI double staining, Sub­G1 analysis, soft agar assays, western blotting, and quantitative PCR. The changes in the mitochondrial membrane potential were assessed using a JC­1 assay and cytosolic and mitochondrial fractionation. A myeloid cell leukemia­1 (Mcl­1) overexpression cell lines were also established to study the role of Mcl­1 on apoptosis. The results showed that PPT inhibited the growth of the two human OSCC cell lines and induced apoptosis, which was accompanied by mitochondrial membrane depolarization. Compared with the control, PPT reduced the expression of Mcl­1 in both cell lines through a proteasome­dependent protein degradation process. Overall, these results suggested that targeting of Mcl­1 protein by PPT induced apoptosis, providing a foundation for further pre­clinical and clinical study of its value in the management of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Leucemia , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Podofilotoxina/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias Bucais/tratamento farmacológico , Células Mieloides
11.
Chembiochem ; 24(23): e202300582, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728423

RESUMO

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Assuntos
Oxigenases , Podofilotoxina , Oxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
12.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570682

RESUMO

The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.


Assuntos
Cisteína , Podofilotoxina , Animais , Suínos , Administração Cutânea , Podofilotoxina/farmacologia , Pele , Epiderme , Tamanho da Partícula , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
13.
Ecotoxicol Environ Saf ; 264: 115392, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651795

RESUMO

Adverse reactions to traditional Chinese medicine have hindered the healthy development and internationalization process of the traditional Chinese medicine industry. The critical issue that needs to be solved urgently is to evaluate the safety of traditional Chinese medicine systematically and effectively. Podophyllotoxin (PPT) is a highly active compound extracted from plants of the genus Podophyllum such as Dysosma versipellis (DV). However, its high toxicity and toxicity to multiple target organs affect the clinical application, such as the liver and kidney. Based on the concurrent effects of PPT's medicinal activity and toxicity, it would be a good example to conduct a systematic review of its safety. Therefore, this study revolves around the Toxicological Evidence Chain (TEC) concept. Based on PPT as the main toxic constituent in DV, observe the objective toxicity impairment phenotype of animals. Evaluate the serum biochemical indicators and pathological tissue sections for substantial toxic damage results. Using metabolomics, lipidomics, and network toxicology to evaluate the nephrotoxicity of PPT from multiple perspectives systematically. The results showed that PPT-induced nephrotoxicity manifested as renal tubular damage, mainly affecting metabolic pathways such as glycerophospholipid metabolism and sphingolipid metabolism. PPT inhibits the autophagy process of kidney cells through the PI3K/Akt/mTOR and Nrf2/HO1 pathways and induces the activation of oxidative stress in the body, thereby causing nephrotoxic injury. This study fully verified the feasibility of the TEC concept for the safety and toxicity evaluation of traditional Chinese medicine. Provide a research template for systematically evaluating the safety of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Fator 2 Relacionado a NF-E2 , Podofilotoxina , Podophyllum , Animais , Ratos , Rim , Fosfatidilinositol 3-Quinases , Podofilotoxina/toxicidade , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Podophyllum/toxicidade , Medicamentos de Ervas Chinesas/toxicidade
14.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2818-2838, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584134

RESUMO

Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.


Assuntos
Fenilalanina Amônia-Liase , Podofilotoxina , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Clonagem Molecular
15.
J Nat Prod ; 86(7): 1844-1854, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37395092

RESUMO

Cancer is a major disease threatening human health worldwide, among which non-small-cell lung cancer (NSCLC) is the most deadly. Clinically, almost all anticancer drugs eventually fail to consistently benefit patients due to serious drug resistance. AKT is a key effector of the PI3K/AKT/mTOR pathway, which is closely related to the occurrence, development, and drug resistance of tumors. Herein, we first designed and synthesized 20 kinds of novel hybrid molecules targeting both tubulin and AKT based on a podophyllotoxin (PPT) skeleton through computer-aided drug design. By CCK8 assay, we screened the compound D1-1 (IC50 = 0.10 µM) with the strongest inhibitory activity against H1975 cells, and its activity was 100 times higher than PPT (IC50 = 12.56 µM) and 300 times higher than gefitinib (IC50 = 32.15 µM). Affinity analysis results showed that D1-1 not only retained the tubulin targeting of PPT but also showed strong AKT targeting. Subsequent pharmacological experiments showed that D1-1 significantly inhibited the proliferation and metastasis of H1975 cells and slightly induced their apoptosis by inhibiting both tubulin polymerization and the AKT pathway activation. Collectively, these data demonstrate that the novel hybrid molecule D1-1 may be an excellent lead compound for the treatment of human NSCLC as a dual inhibitor of tubulin and AKT.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fenilacetatos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose
16.
Biomolecules ; 13(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37509074

RESUMO

The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.


Assuntos
Endófitos , Fungos , Endófitos/química , Fungos/metabolismo , Paclitaxel , Podofilotoxina , Biologia
17.
J Clin Oncol ; 41(27): 4381-4393, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37459583

RESUMO

PURPOSE: Chemotherapeutic exposures are associated with subsequent malignant neoplasm (SMN) risk. The role of genetic susceptibility in chemotherapy-related SMNs should be defined as use of radiation therapy (RT) decreases. PATIENTS AND METHODS: SMNs among long-term childhood cancer survivors of European (EUR; N = 9,895) and African (AFR; N = 718) genetic ancestry from the Childhood Cancer Survivor Study and St Jude Lifetime Cohort Study were evaluated. An externally validated 179-variant polygenic risk score (PRS) associated with pleiotropic adult cancer risk from the UK Biobank Study (N > 400,000) was computed for each survivor. SMN cumulative incidence comparing top and bottom PRS quintiles was estimated, along with hazard ratios (HRs) from proportional hazards models. RESULTS: A total of 1,594 survivors developed SMNs, with basal cell carcinomas (n = 822), breast cancers (n = 235), and thyroid cancers (n = 221) being the most frequent. Although SMN risk associations with the PRS were extremely modest in RT-exposed EUR survivors (HR, 1.22; P = .048; n = 4,630), the increase in 30-year SMN cumulative incidence and HRs comparing top and bottom PRS quintiles was statistically significant among nonirradiated EUR survivors (n = 4,322) treated with alkylating agents (17% v 6%; HR, 2.46; P < .01), anthracyclines (20% v 8%; HR, 2.86; P < .001), epipodophyllotoxins (23% v 1%; HR, 12.20; P < .001), or platinums (46% v 7%; HR, 8.58; P < .01). This PRS also significantly modified epipodophyllotoxin-related SMN risk among nonirradiated AFR survivors (n = 414; P < .01). Improvements in prediction attributable to the PRS were greatest for epipodophyllotoxin-exposed (AUC, 0.71 v 0.63) and platinum-exposed (AUC,0.68 v 0.58) survivors. CONCLUSION: A pleiotropic cancer PRS has strong potential for improving SMN clinical risk stratification among nonirradiated survivors treated with specific chemotherapies. A polygenic risk screening approach may be a valuable complement to an early screening strategy on the basis of treatments and rare cancer-susceptibility mutations.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Segunda Neoplasia Primária , Adulto , Criança , Humanos , Feminino , Estudos de Coortes , Podofilotoxina , Segunda Neoplasia Primária/induzido quimicamente , Segunda Neoplasia Primária/epidemiologia , Neoplasias da Mama/epidemiologia , Fatores de Risco
18.
Appl Microbiol Biotechnol ; 107(17): 5367-5378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436482

RESUMO

Fermentation technology using endophytes is considered a potential alternative approach for producing pharmaceutical compounds like podophyllotoxin (PTOX). In this study, fungus TQN5T (VCCM 44284) was selected from endophytic fungi isolated from Dysosma versipellis in Vietnam for PTOX production through TLC. The presence of PTOX in TQN5T was further confirmed by HPLC. Molecular identification indicated TQN5T as Fusarium proliferatum with 99.43% identity. This result was asserted by morphological characteristics such as white cottony, filamentous colony, layer and branched mycelium, and clear hyphae septa. Cytotoxic assay indicated both biomass extract and culture filtrate of TQN5T presented strong cytotoxicity on LU-1 and HepG2 with IC50 of 0.11, 0.20, 0.041, and 0071, respectively, implying anti-cancer compounds were accumulated in the mycelium and secreted into the medium. Further, the production of PTOX in TQN5T was investigated in the fermentation condition supplemented with 10 µg/ml of host plant extract or phenylalanine as elicitors. The results revealed a significantly higher amount of PTOX in the PDB + PE and PDB + PA at all studied time points in comparison with PDB (control). Especially, after 168 h of culture, PTOX content in the PDB with plant extract reached the peak with 314 µg/g DW which is 10% higher than the best yield of PTOX in previous studies, denoting F. proliferatum TQN5T as a promising PTOX producer. This is the first study on enhancing the PTOX production in endophytic fungi by supplementing phenylalanine-a precursor for PTOX biosynthesis in plants into fermented media, suggesting a common PTOX biosynthetic pathway between host plant and endophytes. KEY POINTS: • Fusarium proliferatum TQN5T was proven for PTOX production. • Both mycelia extract and spent broth extract of Fusarium proliferatum TQN5T presented strong cytotoxicity on cancer cell lines LU-1 and HepG2. • The supplementation of 10 µg/ml host plant extract and phenylalanine into fermentation media of F. proliferatum TQN5T improved the yield of PTOX.


Assuntos
Fusarium , Podofilotoxina , Podofilotoxina/metabolismo , Endófitos/metabolismo , Fusarium/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo
19.
Sci Rep ; 13(1): 9219, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286620

RESUMO

Linum album is a well-known rich source of anticancer compounds, i.e., podophyllotoxin (PTOX) and other lignans. These compounds play an important role in the plant's defensive system. The RNA-Seq data of flax (L. usitatissimum) were analyzed under various biotic and abiotic stresses to comprehend better the importance of lignans in plant defense responses. Then, the association between the lignan contents and some related gene expressions was experimented with HPLC and qRT-PCR, respectively. Transcriptomic profiling showed a specific expression pattern in different organs, and just the commonly regulated gene EP3 was detected with a significant increase under all stresses. The in silico analysis of the PTOX biosynthesis pathway identified a list of genes, including laccase (LAC11), lactoperoxidase (POD), 4-coumarate-CoA ligase (4CL), and secoisolariciresinol dehydrogenase (SDH). These genes increased significantly under individual stresses. The HPLC analysis showed that the measured lignan contents generally increased under stress. In contrast, a quantitative expression of the genes involved in this pathway using qRT-PCR showed a different pattern that seems to contribute to regulating PTOX content in response to stress. Identified modifications of critical genes related to PTOX biosynthesis in response to multiple stresses can provide a baseline for improving PTOX content in L. album.


Assuntos
Linho , Lignanas , Linaceae , Podofilotoxina , Linho/genética , Linho/metabolismo , Linaceae/genética , RNA-Seq , Lignanas/metabolismo
20.
Adv Healthc Mater ; 12(22): e2203144, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37141264

RESUMO

By conjugating a chemotherapeutic candidate drug 4ß-NH-(5-aminoindazole)-podophyllotoxin (ßIZP) and an immunosuppressive protein galectin-1 targeted aptamer AP74, a chemo-immunotherapy molecule (AP74-ßIZP) is developed against liver cancer. AP74-ßIZP can target galectin-1 and enrich the tumor microenvironment to improve the tumor inhibition ratio by 6.3%, higher than that of ßIZP in a HepG2 xenograft model. In safety evaluation, ßIZP cannot be released from AP74-ßIZP in normal tissues with low glutathione level. Therefore, the degrees of organs injury and myelosuppression after the treatment with AP74-ßIZP are lower than those with ßIZP. After 21 d treatment at a drug dose of 5 mg kg-1 , AP74-ßIZP does not cause weight loss in mice, while the weight is significantly reduced by 24% and 14% from oxaliplatin and ßIZP, respectively. In immune synergy, AP74-IZP enhances CD4/CD8 cell infiltration to promote the expression of cell factor (i.e., IL-2, TNF-α, and IFN-γ), which further improves the antitumor activity. The tumor inhibition ratio of AP74-ßIZP is 70.2%, which is higher than that of AP74 (35.2%) and ßIZP (48.8%). Because of the dual effects of chemotherapy and immunotherapy, AP74-ßIZP exhibits superior activity and lower toxicity. The approach developed in this work could be applicable to other chemotherapy drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Podofilotoxina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Galectina 1 , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...